RNA Secondary Structural Determinants of miRNA Precursor Processing in Arabidopsis

نویسندگان

  • Liang Song
  • Michael J. Axtell
  • Nina V. Fedoroff
چکیده

MicroRNAs (miRNAs) are excised from hairpin structures within primary miRNAs (pri-miRNAs). Most animal pri-miRNAs are processed by two cleavages, the first at a loop-distal site approximately 11 nucleotides (nt) from the end of the hairpin and the second approximately 22 nt beyond the first. To identify RNA structural determinants of miRNA processing in plants, we analyzed the functional consequences of changing the secondary structure of the lower (loop-distal), middle (miRNA:miRNA(*)), and upper (loop-proximal) stems of the hairpin in two different pri-miRNAs. Closing bulges immediately below the loop-distal cleavage sites increased the accumulation of accurately cleaved precursor miRNAs but decreased the abundance of the mature miRNAs. A pri-miRNA variant with an unpaired lower stem was not processed, and variants with a perfectly paired middle or upper stem were processed normally. Bioinformatic analysis of pri-miRNA structures, together with physical mapping of initial cleavage sites and in vitro processing of pri-miRNA, reveals that the first, loop-distal cleavage is often at a distance of approximately 15 nt from an unpaired region. Hence, a common determinant of the rate and location of the initial pri-miRNA cleavage is an imperfectly base-paired duplex of approximately 15 nt between the miRNA:miRNA(*) duplex and either a less structured region of the lower stem or its end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor

MicroRNAs (miRNAs) are widespread posttranscriptional regulators of gene expression. They are processed from longer primary transcripts that contain foldback structures (reviewed in). In animals, a complex formed by Drosha and DGCR8/Pasha recognizes the transition between the single-stranded RNA sequences and the stem loop to produce the first cleavage step in miRNA biogenesis. Whereas animal p...

متن کامل

Structure Determinants for Accurate Processing of miR172a in Arabidopsis thaliana

Plant microRNAs (miRNAs) are processed by the RNase III-like enzyme DICER-LIKE1 acting in concert with the double-stranded RNA-binding protein HYPONASTIC LEAVES1 and the zinc finger protein SERRATE. Together, they excise a miRNA/miRNA( *) duplex with a 2 nucleotide 3' overhang from the primary miRNA (pri-miRNA) transcript. pri-miRNAs include a partially self-complementary foldback or stem loop,...

متن کامل

Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis

MicroRNAs originate from primary transcripts (pri-miRNAs) containing hairpin structures. Plant pri-miRNAs have highly variable structures and little is known about the information encoded in their secondary structures. Arabidopsis miR156 is an ambient temperature-responsive miRNA and plays an important role in regulating flowering time. To identify the structural determinants for miR156 process...

متن کامل

Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana.

In plants and animals, gene expression can be down-regulated at the posttranscriptional level by microRNAs (miRNAs), a class of small endogenous RNA. Comparative analysis of miRNA content across species indicates continuous birth and death of these loci in the course of evolution. However, little is known about the microevolutionary dynamics of these genetic elements, especially in plants. In t...

متن کامل

Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010